
During flapping flight, insect wings accelerate masses of air,
generating the forces necessary to support the insect’s weight
and to perform complex maneuvers. At the same time, these
ultralight airfoils (generally only 0.5–5% of body mass;
Ellington, 1984b) must withstand the forces imposed upon
them by the surrounding air, as well as the inertial forces
caused by accelerating and decelerating their own mass up to
several hundred times per second. 

Insect wings perform these roles extremely successfully,
despite the fact that they are largely passive structures, with no
muscular control past the wing base (Wootton, 1992).
Although they are strengthened by a network of tubular veins,
the wings of many species deform noticeably during flight,
especially during slow flight and hovering (Willmott and
Ellington, 1997a). These dynamic changes in the three-
dimensional shape of wings could potentially affect many
aspects of force production, yet few models of insect flight
have successfully incorporated passive wing flexibility or
examined the effects of flexibility on force production. 

In the past two decades, models of insect flight, both
mathematical and physical, have contributed enormously
to our understanding of the basic mechanisms of force

production, despite assuming that insect wings are rigid
structures [e.g. mathematical models of Ellington (1984a),
Lighthill (1973), Sane and Dickinson (2002), Savage et al.
(1978), Smith et al. (1996) and Wilkin and Williams (1993),
and physical models of Bennett (1966, 1970), Dickinson et al.
(1999), Ellington et al. (1996) and Spedding and Maxworthy
(1985)]. Some aspects of wing flexibility have been mimicked
in models by altering the relative positions of wing regions
(Liu et al., 1998; Vest and Katz, 1996) or by modeling
deformations as harmonic waves (Combes and Daniel, 2001;
Daniel, 1987; Wu, 1971). These approaches provide unique
insights into the mechanisms of force generation during flight,
but often neglect one or more critical components of wing
deflection (e.g. spanwise bending, chordwise bending or
torsion), which can have large effects on aerodynamic force
production (Batchelor, 1967). Models of insect flight that
incorporate passive wing flexibility (in which shape changes
are driven by forces imposed upon the wing rather than being
specified in advance) are exceedingly rare (e.g. Smith, 1996). 

One difficulty in modeling passive wing flexibility is that
forces applied at the wing base lead to bending and twisting
that are influenced not only by overall stiffness and gross
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The dynamic, three-dimensional shape of flapping insect
wings may influence many aspects of flight performance.
Insect wing deformations during flight are largely passive,
and are controlled primarily by the architecture and
material properties of the wing. Although many details of
wing structure are well understood, the distribution of
flexural stiffness in insect wings and its effects on wing
bending are unknown. In this study, we developed a
method of estimating spatial variation in flexural stiffness
in both the spanwise and chordwise direction of insect
wings. We measured displacement along the wing in
response to a point force, and modeled flexural stiffness
variation as a simple mathematical function capable of
approximating this measured displacement. We used this
method to estimate flexural stiffness variation in the
hawkmoth Manduca sexta, and the dragonfly Aeshna

multicolor. In both species, flexural stiffness declines
sharply from the wing base to the tip, and from the
leading edge to the trailing edge; this variation can be
approximated by an exponential decline. The wings of M.
sexta also display dorsal/ventral asymmetry in flexural
stiffness and significant differences between males and
females. Finite element models based on M. sexta
forewings demonstrate that the measured spatial variation
in flexural stiffness preserves rigidity in proximal regions
of the wing, while transferring bending to the edges, where
aerodynamic force production is most sensitive to subtle
changes in shape.
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anatomical features (e.g. flexion or fold lines), but also by the
distribution of flexibility throughout the wing (Wootton, 1999).
Extremely detailed finite element models of insect wings
(incorporating vein configuration, three-dimensional relief,
and variations in vein and membrane characteristics) could
potentially reproduce the distribution of flexibility in real
wings by accounting for the precise structural and material
properties of the wing. Unfortunately, precise data about the
local properties of insect wings are often unavailable and finite
element models must be constructed using simplifying
assumptions. For example, many finite element models assume
that the material stiffness of the wing (Young’s modulus, E) is
equivalent to that of insect chitin and constant throughout
the wing (Smith, 1996; Kesel et al., 1998); however, recent
measurements reveal that E can vary widely within a wing
(Smith et al., 2000) and that other proteins, such as resilin,
occupy key positions (e.g. wing vein joints) in insect wings
(Gorb, 1999; Haas et al., 2000a,b). Measuring spatial variation
in these material properties, as well as the details of vein and
membrane structure, is a time-consuming process that would
need to be repeated for each new species studied.

Although these detailed approaches can provide important
information about functional wing morphology in pivotal,
well-studied species (e.g. Herbert et al., 2000), a more general
approach to wing stiffness measurements and modeling could
facilitate comparative studies and attempts to incorporate
passive flexibility into models of force production. Rather
than measuring (and modeling) geometric and material
properties separately, the overall bending response of the wing,
or flexural stiffness (EI, the product of material stiffness E and
second moment of area I) can be determined. Performing
measurements of EI averaged over the whole wing is relatively
straightforward (see Combes and Daniel, 2003a), but
measuring spatial variation in flexural stiffness throughout a
wing is more challenging. Steppan (2000) approached this
issue by measuring average flexural stiffness over increasingly
larger sections of dried butterfly wings, and Wootton et al.
(2000) measured average flexural stiffness in three isolated
sections of locust hindwing. However, no studies to date have
demonstrated a method of measuring the spatial variation in
local flexural stiffness of intact insect wings.

In this study, we developed a method of approximating
spatial variation in flexural stiffness along two axes of the wing
(in the spanwise and chordwise direction). We measured
flexural stiffness variation in two insects, the hawkmoth
Manduca sextaand the dragonfly Aeshna multicolor. These
insects have wings of similar size and are both agile fliers,
capable of hovering as well as fast, forward flight. However,
they are very distantly related and display large differences in
wing shape and venation pattern (see Combes and Daniel,
2003a) that may underlie differences in the distribution of
flexural stiffness in their wings. 

To determine the spatial pattern of flexural stiffness in
wings, we first developed a method to measure displacement
(due to a point force) along the wing in the spanwise and
chordwise directions. Next, we proposed various alternatives

for how flexural stiffness might vary along the wing
(represented by simple mathematical functions) and predicted
the patterns of displacement that a loaded wing with these
theoretical stiffness distributions would display. We then found
the flexural stiffness distribution that produced a pattern of
displacement most similar to the pattern measured in a real
wing. We used this method to estimate the flexural stiffness
distribution of the wing in response to forces applied from both
the dorsal and the ventral side, as dorsal/ventral asymmetry has
been noted in previous studies (Ennos, 1988; Steppan, 2000;
Wootton, 1993; Wootton et al., 2000).

We also created two different finite element models of an
insect wing, based on the planform geometry of a Manduca
sexta forewing. Rather than realistically reproducing the
structure and behavior of Manducawings, these generalized
models provide a method of assessing the consequences of
flexural stiffness distributions to wing bending. We attempted
to capture major elements of wing structure in the models (e.g.
vein position and flexural stiffness distribution) while avoiding
detailed structural features, such as variation in wing thickness
and three-dimensional relief. We used these models to examine
how different spatial patterns of EI determine bending patterns
in wings subjected to both static and dynamic loads.

Materials and methods 
Flexural stiffness measurements

Insect handling and wing preparation were performed as in
Combes and Daniel (2003a). Calculations of EI distribution
require both the applied force and the displacement along the
length of the wing. We measured displacement of wings in the
spanwise direction along a line running from the wing base to
the tip, and in the chordwise direction along a line running
from the leading edge to the trailing edge (approximately
midway between the base and tip). We attached a fresh wing
at either the wing base or leading edge, and applied a point
force to the wing with a pin attached to a force beam
(see Combes and Daniel, 2003a), using a small drop of
cyanoacrylate glue to prevent the pin from slipping off the
wing tip or trailing edge. We illuminated the wing with sheets
of laser light; these sheets appear as lines on the wing, and can
be adjusted so that one line illuminates a strip of the wing from
the base to the tip (Fig.·1A) or from the leading to the trailing
edge (intersecting the pin). When a force is applied to the wing,
the laser lines follow the surface of the wing, shifting their
position in proportion to the displacement of the wing
(Fig.·1B). We used a Coolpix 900 digital camera (Nikon,
Tokyo, Japan) angled approximately 45° from the surface of
the wing to photograph unloaded and loaded wings, as well as
a calibration object containing a series of steps of known
height.

We measured displacement in response to loads of varying
magnitude, returning to the unloaded position to photograph
the wing before applying each new load. We checked the
repeatability of displacement measurements on the wings of a
hawkmoth (in both the spanwise and chordwise direction) by
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applying five different loads to the dorsal surface of the wing
and repeating each load three times (applying loads in
random order). 

For all other hawkmoth and dragonfly wings, we measured
displacement on the dorsal surface of the wing at four
different loads, gently removed the glued pin from the edge
of the wing (without tearing the wing membrane), flipped the
slide over, and measured displacement on the ventral side of
the wing at four different loads. Dorsal stiffness in this study
describes the stiffness of the wing in response to loading on
the dorsal surface (resulting in a dorsally convex surface; see
Steppan, 2000), which is equivalent to ventral flexion in other
studies (Ennos and Wootton, 1989; Wootton, 1981, 1992). 

After completing the flexural stiffness measurements, we
photographed the wings on a white background from above
and measured wing area, span and maximum chord length in
NIH Image. For Manduca sexta (whose wing morphology
may depend on gender; Willmott and Ellington, 1997b), we
also calculated aspect ratio (span2/area) of the forewings and
wing loading (body mass divided by the area of both
forewings).

In each hawkmoth, we measured spanwise flexural
stiffness on one forewing and chordwise flexural stiffness on
the other. We did not measure the flexural stiffness of the
hindwings, which are much smaller and overlap with the
forewings to varying degrees during flight. In dragonflies
(which have independent fore- and hindwings of similar size),
we measured spanwise flexural stiffness on one forewing and
one hindwing, and chordwise flexural stiffness on the other
forewing and hindwing. 

We analyzed images of loaded and unloaded wings with a
custom Matlab program (developed by A. Trimble) that finds
the center of the laser line running from the wing base to the
tip or from the leading to the trailing edge (Fig.·1A,B). We
used a 2nd order Butterworth filter to remove noise from the
line position data, and splined the unloaded and loaded data to
an equal number of points for comparison. We found the
difference in line position between the two data sets [y(x);
Fig.·1B] and converted this difference to actual wing
displacement along the wing δ(x) with a factor derived from
analysis of the calibration object.

With this displacement data and the applied force, we were
able to estimate local flexural stiffness by using a continuous
beam equation to approximate EI variation along the wing (see
Appendix). This equation defines local flexural stiffness as a
function of the local curvature (second spatial derivative of
displacement) and the local moment (applied force times
distance from the point of force application). To avoid errors
caused by differentiating displacement data, we solved this as
an inverse problem; we posed several simple mathematical
functions that might approximate flexural stiffness variation
along the wing (constant, linear, exponential, or 2nd degree
polynomial) and calculated the expected pattern of
displacement due to the applied force and these possible EI
distributions. We then used a simplex minimization program
to find the EI distribution that provided the best fit to the

measured displacement along the wing. Finally, we calculated
average flexural stiffness (E

–
I
–
) by integrating the equation

describing flexural stiffness variation along the wing’s length
(see Appendix). 

To verify the method of determining flexural stiffness
distribution, we measured δ(x) and calculated local flexural
stiffness of a rectangular glass coverslip, which is made of
homogeneous material and has a constant material stiffness (E)
and second moment of area (I).

Comparisons within and between individuals

Because wing displacement in hawkmoth and dragonfly
wings does not increase linearly with applied force (see
Combes, 2002), our estimates of flexural stiffness varied with
the relative displacement of the wing (δT/L, tip displacement
divided by wing span or trailing edge displacement divided by
chord length). To facilitate comparisons between individuals
and species, we standardized measurements at a relative
displacement of 0.05 for spanwise measurements and 0.08 for
chordwise measurements (values that are within the range
measured on real wings). For each individual, we used the
slope of the relationship between EI variables (E

–
I
–

and
coefficients describing the distribution of flexural stiffness)
and relative displacement to estimate the value of these
variables at a given δT/L. 

In Manduca sexta, we collected spanwise data from nine
males and four females, and chordwise data from ten males
and nine females. In Aeshna multicolor, we used only males,
but tested both fore and hindwings (which have different
morphologies), so we examined stiffness separately in the two

Fig.·1. Unloaded (A) and loaded (B) Manduca sextawing illuminated
with laser lines. A Matlab program was used to find the center of a
laser line running from the base of the wing to the tip before and after
applying a point force at the tip (yellow and red lines, respectively).
The change in position of the laser line y(x) was then used to find
displacement of the wing δ(x). 
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sets of wings. We collected spanwise and chordwise data on
both fore and hindwings from eight individuals. 

Within each group, we tested for differences between the
dorsal and ventral side of the wing with a Wilcoxon signed
rank test. We also tested for differences between male and
female Manduca sexta with a Mann–Whitney U-test.

Finite element modeling

To investigate how flexural stiffness variation affects wing
bending, we created two simplified finite element models of an
insect wing (based on the forewing of a male Manduca sexta)
with the same geometry, but dramatically different patterns of
spatial variation in flexural stiffness (Fig.·2). We used MSC
Marc/Mentat 2001 to construct model wings with an accurate
planform configuration of veins and membrane, but a simplified
three-dimensional geometry (with no camber or three-
dimensional relief; see Discussion). We increased the material
stiffness of vein elements beyond that of the surrounding
membrane to mimic the higher second moment of area of
tubular veins and produce the measured spanwise-chordwise
anisotropy in flexural stiffness (see Combes and Daniel, 2003a).

The models were composed of thin shell elements with
a density of 1200·kg·m–3 (as measured in insect wings;
Wainwright et al., 1982) and a thickness of 45·µm. We used a
Poisson’s ratio of 0.49, as measured in some biological
materials (Wainwright et al., 1982); because the Poisson’s ratio
of insect wings is unknown, we tested the effects of using a
Poisson’s ratio of 0.3 and found that the difference in model
behavior was negligible. The uniform mass distribution of the

models may cause dynamic bending in the distal regions to be
overestimated, but qualitative differences in wing bending
between the two models should not be affected. To determine
the minimum number of elements necessary to capture the
bending behavior of wings, we performed a sensitivity analysis
with models composed of 200, 350, 865 and 2300 total
elements, and found that 865 elements were sufficient to
ensure asymptotic performance of the model. 

We adjusted the material stiffness E of vein and membrane
elements in the two models to produce different spatial patterns
of flexural stiffness, but the same overall bending performance
(so that tip and trailing edge displacement in response to a point
load were the same as displacements measured in real wings).
In the first model, we assigned all vein elements a single
(homogeneous) Young’s modulus of E=1.5×108·N·m–2

(similar to values measured in locust hindwing; Smith et al.,
2000), and all membrane elements a Young’s modulus of
E=2.1×1012·N·m–2 (representing both increased material
stiffness and the increased second moment of area of tubular
veins; Fig.·2A). In the second model, we applied declining
values of material stiffness to the model wing in 12 strips
oriented diagonally (Fig.·2B); these strips are perpendicular to
most of the wing veins, which decrease in diameter towards
the wing edge and thus are likely to decrease in stiffness along
this axis. We adjusted the values of material stiffness in these
strips to approximate patterns of overall wing flexural stiffness
measured in real Manducawings (E in the model varies from
4.7×107·N·m–2 to 4.5×109·N·m–2 in membrane elements, and
from 1.9×1011·N·m–2 to 1.8×1013·N·m–2 in vein elements).

To determine the resulting pattern of flexural stiffness
variation in the spanwise direction of the model wings, we fixed
each wing at its base (with no displacement or rotation) and
applied a point force at the tip. For chordwise measurements,
we fixed the model at its leading edge (from the base to 2/3
span) and applied a point force at the trailing edge. We recorded
the displacement at 22 nodes (junctions between elements)
aligned between the point of attachment and the point of force
application, and used this information to estimate spanwise and
chordwise flexural stiffness distribution with the Matlab
simplex minimization program, as in real wings. 

We compared static bending performance of the two models
by fixing each wing at its base and applying either a point load
of 0.003·N at the tip (within the range of loads applied to real
wings) or a pressure load of –14.43·Pa to the wing surface
(equivalent to the average lift force that the wing would
experience during steady flight). We compared dynamic bending
by flapping each model wing at a realistic wing beat frequency
and stroke amplitude. We applied boundary conditions to the
nodes at the wing base so that they could not translate in
any direction and could rotate only in the dorsal–ventral
direction (around the y-axis, see Fig.·2). We began the
simulation with initial conditions of zero displacement and zero
velocity at all nodes, and gradually increased the rotation at
the wing hinge to a sinusoidal motion with the following
function:

θ(t) = (1 – exp–t/τ) . sin(ωt)·, (1)

S. A. Combes and T. L. Daniel

Fig.·2. Finite element models based on Manduca sextawings.
(A) Model wing with membrane elements (blue) and vein elements
(pink), each of homogeneous material stiffness E. (B) Model wing in
which declining material stiffness of membranes and veins results in
an exponential decline in flexural stiffness. Each color represents a
different value of material stiffness. 
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where θ is rotation at the base nodes, t is time in seconds, τ is
the time constant and ω is the angular frequency (2πf, where f
is the flapping frequency). We flapped the wings at 26·Hz, and
found that a time constant of 1/20 s avoids transient artefacts
of rapid initial acceleration and allows the wings to reach their
full stroke amplitude of 108° after 6.5 flaps. We ran each model
for 19200 time steps, simulating 12.5 flaps in 0.48·s. 

Because the finite element program does not calculate
aerodynamic forces acting on the wing, a damping factor had
to be applied to stabilize the models. We compared the motions
of the model wing with declining material stiffness to those of
a real Manducawing attached to a motor and rotated in the
same way (Combes and Daniel, 2003b; Daniel and Combes,
2002). We found that a mass damping factor of 10 reduced
high frequency vibrations and provided the closest match to
motions of the real wing, and applied this damping factor to
both model wings.

Results
Flexural stiffness measurements

The simplex minimization analyses revealed that proposed
EI distributions based on either exponential or 2nd-degree
polynomial equations can provide relatively good predictions
of measured wing displacement, while constant or linear
distributions of EI cannot (see Combes, 2002). However, the
proposed exponential EI distributions were more consistent
within and between individuals, and effectively predicted
displacement in the spanwise and chordwise directions of both

Manduca sextaand Aeshna multicolor. Because these more
consistent results allow us to make comparisons within and
between individuals, we used an exponential equation to
approximate flexural stiffness patterns in the species tested.

Our control measurements validated the procedure for
estimating local flexural stiffness and revealed that the method
is repeatable. Bending tests on a glass coverslip showed that a
constant distribution of flexural stiffness provided the best
approximation of measured displacement (as expected for a
homogeneous beam). In addition, measurements of Manduca
flexural stiffness in which each load was repeated several times
provided consistent estimates of the EI distribution each time
that a given load was applied (see Combes, 2002).

Morphological measurements showed that female Manduca
sexta are significantly heavier and have larger wings than
males (body mass, P=0.004; wing area, P=0.003; wing span,
P=0.002, chord length, P=0.004; wing mass, P=0.012), but
aspect ratio and wing loading were not significantly different
in the individuals sampled (aspect ratio, P=0.946; wing
loading, P=0.262). Although overall flexural stiffness scales
with wing size across a broad range of species (see Combes
and Daniel, 2003a), spanwise E

–
I
–

was not significantly different
in male and female Manduca (dorsal, P=0.165; ventral,
P=0.308; Fig.·3A,B). In the chordwise direction, E

–
I
–

was higher
in females than in males on the dorsal side of the wing
(P=0.021), but not on the ventral side (P=0.477). The
exponents of the stiffness distribution in the chordwise
direction were significantly higher in females than in males
(dorsal, P=0.006; ventral, P=0.008), but exponents in the
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Fig.·3. Flexural stiffness distribution in
wings of Manduca sextaand Aeshna
multicolor, and in finite element models
of M. sexta wings. In each graph,
spanwise flexural stiffness is shown
above (longer lines) and chordwise
flexural stiffness below; dorsal
measurements are in black and ventral
measurements in gray. Each line within
these groups represents the flexural
stiffness distribution estimated from
wing displacement measurements
performed on a different individual.
(A) Flexural stiffness distribution of
male Manduca sextaforewings (N=9
spanwise, N=10 chordwise), and of
finite element models with
homogeneous (blue) and exponentially
declining (red) vein and membrane
material stiffness. (B) Flexural stiffness
distribution of female Manduca sexta
forewings (N=4 spanwise, N=9
chordwise). (C) Flexural stiffness
distribution of male Aeshna multicolor
forewings (N=8). (D) Flexural stiffness
distribution of male Aeshna multicolor
hindwings (N=8). 
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spanwise direction were the same in males and females (dorsal,
P=0.165; ventral, P=0.089). 

The wings of all Manduca sextadisplayed dorsal/ventral
asymmetry; the average flexural stiffness of their wings was
higher in response to forces applied to the dorsal side of the
wing, in both the spanwise and chordwise direction (spanwise,
P=0.002; chordwise, P<0.001; Fig.·3A,B). In contrast, Aeshna
multicolor displayed no dorsal/ventral difference in its
hindwings or in the chordwise direction of its forewings
(hindwing spanwise, P=0.327; hindwing chordwise, P=0.735;
forewing chordwise, P=0.069; Fig.·3C,D). In the spanwise
direction, the forewings were stiffer on the dorsal side than on
the ventral side (P=0.018), but the difference between dorsal
and ventral flexural stiffness was far smaller than that seen in
Manduca.

Finite element modeling

The finite element model with diagonal strips of declining
material stiffness accurately reproduced the sharp decline in
flexural stiffness measured in male Manducawings (Fig.·3A,
red lines), while the model with homogeneous vein and
membrane regions displayed a vastly different pattern of
flexural stiffness (Fig.·3A, blue lines).

The effects of these differences in EI distribution were
apparent in static tests on the model wings. Although an
applied point force resulted in the same tip displacement, most
bending in the exponential wing was confined to the outer third
of the wing, while the homogeneous wing bent gradually along
much of its span (Fig.·4A). When subjected to a pressure load,

the homogeneous wing again bent along a large portion of its
length, and its maximum displacement was nearly twice as
large as the displacement of the exponential wing (Fig.·4B). In
the exponential wing, displacement was localized to the tip and
trailing edge of the wing, and bending was apparent in both the
spanwise and chordwise directions.

The effects of an exponential decline in flexural stiffness
were further illustrated by dynamic tests on the models. The
homogeneous wing showed little chordwise bending and
spanwise bending was most pronounced near the base, while
the distal portion of the wing remained relatively rigid (Fig.·5,
blue wings). In contrast, the exponential wing bent
considerably in the chordwise direction, and bending in the
spanwise direction was confined mainly to the outer portion of
the wing (Fig. 5, red wings). For a movie of the model wings
in motion, see http://faculty.washington.edu/danielt/movies. 

Discussion
Modeling passive wing flexibility requires some knowledge

of the spatial distribution of stiffness throughout a wing.
Although few studies have attempted to quantify spatial
patterns of stiffness, a number of qualitative hypotheses have
been put forward concerning the relationship between the
structure of insect wings and their regional mechanical
behavior. Most wings have relatively stiff, supporting zones
near the wing base and leading edge, and relatively deformable
areas near the edges of the wing (Wootton, 1981). Wing veins
taper in diameter from base to tip (Wootton, 1992), and the
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Fig.·4. Results of static bending tests on finite element model (FEM) wings. Wings are fixed at the base, and displacement from original
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is shown on the left and the wing with exponentially declining material stiffness is shown on the right. (A) Displacement due to a point force of
0.003·N (green arrow) at the wing tip. (B) Displacement due to a normal face load of –14.43·Pa (green arrows), the approximate pressure on a
wing during steady flight. 
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presumed reduction in stiffness that this provides could serve
many purposes, including reducing the inertial load at wing
tips (thus reducing energy expenditure and stress at the wing
base) and allowing wing tips to buckle and rebound from
collisions without damage (Wootton, 1992). In addition, a
wing that is stiff at the base and more flexible at the tip would
be well suited to withstand the bending torques (which decline
sharply from base to tip) generated by flapping (Ennos, 1989).

Our measurements of spatial variation in flexural stiffness
agree with these qualitative observations; flexural stiffness
declines sharply from wing base to tip and from the leading to
the trailing edge in the wings of both Manduca sextaand
Aeshna multicolor. Displacement in the spanwise and
chordwise directions of these wings can be predicted fairly
well when the flexural stiffness distribution is approximated by
an exponential equation. The observed similarities in flexural
stiffness distribution in these two species (despite large
differences in wing shape and venation pattern) suggest that a
sharp decline in wing flexural stiffness towards the tip and
trailing edge may be a common feature of many insect wings. 

Although detailed inter-specific comparisons are not feasible
with only two species, this study demonstrates several
interesting intra-specific differences, particularly in Manduca
sexta. Male and female Manduca sextaappear to differ in the
spatial patterns of flexural stiffness in their wings; chordwise
flexural stiffness declines far more sharply in male moths than
in female moths (Fig.·3A,B), and as a result, the wings of
female moths are significantly stiffer in the chordwise direction
(dorsal E

–
I
–

is higher). The functional significance of these
differences is unclear, but other aspects of Manduca wing
morphology (such as the physical coupling of fore- and
hindwings) also display sexual dimorphism (Eaton, 1988),
which may be related to higher wing loading in females
carrying eggs (Willmott and Ellington, 1997b). The traits

measured in female hawkmoth wings could in some way
compensate for this intermittent higher wing loading, for
example by influencing the pattern or extent of chordwise wing
deflections during flight.

The wings of both male and female Manduca sextadisplay
a large dorsal/ventral difference in average flexural stiffness,
and in the exponents of flexural stiffness distribution. Average
flexural stiffness is greater in response to forces applied on the
dorsal side than on the ventral side (in both the spanwise and
chordwise direction). In the spanwise direction, this difference
is greatest near the base (Fig.·3A,B). Steppan (2000) found a
similar dorsal/ventral asymmetry near the base of butterfly
wings, and higher dorsal flexural stiffness has also been
measured in the leading edge of locust hindwings (Wootton et
al., 2000). 

Although measurements of such bending asymmetry are
rare, theoretical studies have suggested that insect wings might
display dorsal/ventral stiffness asymmetry due to the camber
inherent in most wings (Ennos, 1995, 1997; Wootton, 1993).
We explored the effects of camber on bending asymmetry in
the finite element model of a Manduca wing, adding 4%
spanwise and 5% chordwise camber (the maximum values
measured in real wings). Adding this degree of camber to the
model wings had a relatively small effect on tip and trailing
edge displacement (see Combes and Daniel, 2003a), and failed
to produce any dorsal/ventral bending asymmetry (tip
displacement was identical whether the force was applied to
the convex or the concave side; see Combes, 2002). 

Camber may in fact influence the maximum load each side
of the wing can resist before buckling (the buckling load), and
the finite element model does not simulate elastically stable
buckling. However, our measurements on real wings do not
display the strong non-linear dependence on loading that would
be expected if elastically stable buckling were occurring during
these static tests. In a more dynamic situation (such as flapping
flight), where continuous shape changes can alter flexural
stiffness, camber may in fact lead to dorsal/ventral differences
in wing deformation. However, wing camber does not appear
to explain the large differences measured in this study on wings
subjected to static point loading.

The structural source of this bending asymmetry remains
unclear. Although Manduca wings have none of the gross
anatomical features often associated with bending asymmetry
(e.g. a ventral flexion line), their veins may contain one-way
hinges or other micro-structural features that facilitate
asymmetric bending in other insect wings (Wootton, 1981;
Wootton, 1992). In addition, the stress-stiffening effect
explored by Kesel et al. (1998) in models of dipteran wings
could potentially apply to Manduca. When unloaded, the
membranes of Manducawings lie rather loosely between the
veins extending to the trailing edge. A point force applied to
the dorsal (convex) side of the trailing edge appears to pull the
trailing edge veins further apart, which would first remove any
slack in the membrane, and then possibly increase the stiffness
of the wing as force is applied to the already-taut membrane
(the stress-stiffening effect). In contrast, when a point force is

Fig.·5. Sequence of images from flapping finite element model wings
with homogeneous (blue) or exponentially declining (red) vein and
membrane material stiffness. Wings are moving to the right, viewed
from their leading edge. Models are shown near the end of the
simulation at the same time steps, beginning at 0.4325·s and
proceeding in 0.0029·s intervals. For a movie of the model wings in
motion, see http://faculty.washington.edu/danielt/movies. 
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applied to the ventral side of the trailing edge, the veins are
pushed together and the membranes between them become
looser.

Although the finite element models do not reproduce this
dorsal/ventral asymmetry, the strikingly different bending
patterns of the two models demonstrate that flexural stiffness
distribution is critical in determining how insect wings bend.
In the model wing with exponentially declining flexural
stiffness, both static and dynamic bending are limited to the tip
and trailing edge, whereas bending in the homogeneous model
occurs along the entire span. 

These results suggest that the sharply declining flexural
stiffness measured in real wings helps maintain rigidity near
the wing base (despite larger bending moments), while
localizing bending to the tip and trailing edge, which are
regions of particular importance in controlling aerodynamic
force production. The trailing edge is a critical control surface
in airplane wings (affecting both the magnitude of lift and the
lift-to-drag ratio; Anderson, 1991), and passive deformations
in this region are likely to play a similarly important role in
controlling flight forces in insects. The integration of passive
flexibility and spatial patterns of flexural stiffness into models
of insect flight will be an important step in determining the
functional significance of wing structure and dynamic bending
to insect flight performance.

Appendix
To calculate local flexural stiffness, we treated each wing as

a heterogeneous, two-dimensional beam in the spanwise (or
chordwise) direction, and used a continuous beam equation to
estimate flexural stiffness along this axis. With the beam
attached at one side and a point force applied at the other end,
flexural stiffness at any point along the beam is the moment
divided by the local curvature (or the second spatial derivative
of displacement):

where M(x) is the moment and δ(x) the displacement at
position x. If we assume that the point force is applied at an
angle approximately 90° from the beam, then the moment is
the product of the applied force and the distance between the
point of force application and position x on the beam:

where F is the applied force and L is the total length of the
beam.

If tip displacement is extremely large relative to beam
length, the beam is bent down so far that its coordinates in the
x-dimension while loaded are significantly different from its
coordinates while unloaded, invalidating Equation·A2.
However, Equation·A2 is valid for our measurements for the
following reasons: (i) all measurements were standardized to
a relative displacement (δT/L) of 0.05 in the spanwise direction
and 0.08 in the chordwise direction, (ii) original measurements

were rarely performed at relative displacements over 0.08 in
the spanwise direction and 0.15 in the chordwise direction,
and (iii) even in the most extreme cases (where relative
displacement exceeded 0.15), the error in coordinates
introduced by length changes in the x-dimension was less than
4%.

We solved Equation·A2 in reverse, posing a functional
distribution for EI(x), calculating the expected displacement
δ(x), and using simplex minimization to find the parameters
that minimize the difference between predicted and measured
wing displacement. We proposed that stiffness in the spanwise
or chordwise direction might be constant, or that its spatial
pattern might be approximated by a linear, exponential, or 2nd-
degree polynomial equation:

EI(x) = d·, (A3)

EI(x) = mx+ b·, (A4)

EI(x) = c.expax·, (A5)

EI(x) = px2 + qx+ r·. (A6)

Each of the proposed EI distributions (Equations·A3–A6)
was inserted into the following equation to find the expected
displacement along the span or chord given an applied moment
[F(L–x)]:

We used a simplex minimization program in Matlab that tests
various values of the coefficients (for example,m and b in
Equation·A4) to find the specific EI distribution (for each
equation type) that most successfully predicts wing
displacement along the span or chord.

After estimating the spatial distribution of flexural stiffness,
we calculated average flexural stiffness E

–
I
–

of the wing by
integrating the continuous distribution EI(x):

where xo is the starting point (near the base or leading edge)
and xmax is the end point of data collection.

List of symbols
a coefficient in exponential equation (A5)
b intercept in linear equation (A4)
c coefficient in exponential equation (A5)
d constant (Equation A3)
E material stiffness (Young’s modulus)
EI flexural stiffness
E
–
I
–

average flexural stiffness
f flapping frequency
F force
I second moment of area
L beam length
m slope in linear equation (A4)

(A8)
1

(xmax– xo)
E
–
I
–

= EI(x)dx ,
⌠

⌡

xmax

xo

(A7)
F(L – x|)

EI(x|)
δ(x) = dx| dx .

⌠

⌡

L

0

⌠

⌡

x

0









(A2)
F(L – x)

d2δ(x)/dx2
EI(x) = ,

(A1)
M(x)

d2δ(x)/dx2
EI(x) = ,
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M moment
p coefficient in polynomial equation (A6)
q coefficient in polynomial equation (A6)
r coefficient in polynomial equation (A6)
t time
x,y,z spatial coordinates
xo starting point of data collection
xmax end point of data collection
δ(x) displacement at position x
δT displacement at tip or trailing edge
δT/L relative displacement of tip or trailing edge 
θ rotation at wing base
τ time constant 
ω circular frequency (2πf)

A. Trimble was critical in devising the method of
measuring displacement by a laser ranging technique and in
developing Matlab code to analyze loaded and unloaded
images. M. Tu and E. Goldman generously provided useful
comments and Matlab wisdom. J. Henry provided advice on
collecting dragonflies and donated specimens to the study. J.
Dierberger at MSC Software provided crucial troubleshooting
of the FEM models, without which the dynamic simulations
would not have been possible. This work was supported by
NSF grant F094801 to T. Daniel, the John D. and Catherine T.
MacArthur Foundation, an NSF graduate fellowship to S.
Combes, and an ARCS fellowship to S. Combes. 
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