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Abstract We investigated changes in sonication (or buzz-

pollination) behavior of Bombus impatiens bumblebees,

after consumption of the neonicotinoid pesticide, imida-

cloprid. We measured sonication frequency, sonication

length, and flight (wing beat) frequency of marked bees

collecting pollen from Solanum lycopsersicum (tomato),

and then randomly assigned bees to consume 0, 0.0515,

0.515, or 5.15 ng of imidacloprid. We recorded the number

of bees in each treatment group that resumed sonication

behavior after consuming imidacloprid, and re-measured

sonication and flight behavior for these bees. We did not

find evidence that consuming 0.0515 ng imidacloprid

affected the sonication length, sonication frequency, or

flight frequency for bees that sonicated after consuming

imidacloprid; we were unable to test changes in these

variables for bees that consumed 0.515 or 5.15 ng because

we did not observe enough of these bees sonicating after

treatment. We performed Cox proportional hazard regres-

sion to determine whether consuming imidacloprid affec-

ted the probability of engaging in further sonication

behavior on S. lycopersicum and found that bumblebees

who consumed 0.515 or 5.15 ng of imidacloprid were

significantly less likely to sonicate after treatment than bees

who consumed no imidacloprid. At the end of the experi-

ment, we classified bees as dead or alive; our data suggest a

trend of increasing mortality with higher doses of imida-

cloprid. Our results show that even modest doses of

imidacloprid can significantly affect the likelihood of

bumblebees engaging in sonication, a behavior critical for

the pollination of a variety of crops and other plants.
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Introduction

Crops and wild plants depend on insects for pollination

(McGregor 1976; Klein et al. 2007). Honeybees pollinate

many crops, but wild bees are valuable pollinators for a

significant number of crops globally (Klein et al. 2007).

Because much of the human food supply depends on bees,

concern has been expressed about recent population

declines in honeybees (Apis mellifera) (Meffe 1998; van

Engelsdorp et al. 2009) and wild bees (Gallai et al. 2009;

Goulson et al. 2015). Pesticides may be one factor con-

tributing to the wide-scale decline of pollinators (Potts

et al. 2010), and many studies have investigated the effects

of sub-lethal and chronic exposure on bees (Desneux et al.

2007; Gill et al. 2012; Henry et al. 2012; Whitehorn et al.

2012; Gill and Raine 2014).

One common pesticide used in the United States and

much of the world is imidacloprid (Pollak and Vouillamoz

2011). This is a systemic and contact insecticide in the

class of neonicotinoid (mimicking nicotine) pesticides

(Mullins 1993; Tomizawa and Casida 2005; Gervais et al.

2010). It acts on acetylcholine receptors in the nervous

system (Nagata et al. 1997) and has low mammalian tox-

icity (Mullins 1993), but causes paralysis and eventual

death in insects (Kagabu et al. 2004). Imidacloprid is kills

freshwater arthropods at concentrations of between several

lg L-1 to several thousand lg L-1 (Beketov and Liess
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2008). Neonicotinoid pesticides have delayed effects that

lead to death, but not within the time span of typical LD50

(lethal oral dose) measurements of 24 or 48 h (Beketov and

Liess 2008; Rondeau et al. 2014). Concerns about the

effects of neonicotinoids on pollinators led to an EU-wide

ban on three neonicotinoid pesticides in 2013, including

imidacloprid (Decourtye et al. 2013; European Commis-

sion 2013).

Neonicotinoids and their metabolites (also toxic to

insects) have been reported in all tissues of plants,

including pollen and nectar (Pohorecka et al. 2012). When

applied to the soil, imidacloprid can be incorporated into

nectar for up to *230 days after application (Byrne et al.

2014). When imidacloprid is applied to seed coatings, the

majority of the pesticide (up to 90 %) remains in the soil

(Goulson 2013). The amount of pesticide found in pollen

and nectar varies. The following values have been reported

for imidacloprid residues: 10 ppb nectar and 14 ppb in

pollen from squash (Stoner and Eitzer 2012), 16 ppb in

buckwheat nectar (Krischik et al. 2007), and 12.8 ng mL-1

in nectar of citrus trees (Byrne et al. 2014). In the citrus

experiment, Byrne et al. (2014) found that when imida-

cloprid was applied at the full label rate (1.02 L ha-1), the

highest reported value in nectar was 21.9 ng mL-1; how-

ever, taking into account the total residues of imidacloprid

and its toxic metabolites, the highest amount reported was

37.1 ng mL-1. Furthermore, the highest amount of total

residues in uncapped nectar from the hive comb of nearby

honeybees was reported as 95.2 ng mL-1 (Byrne et al.

2014). Other researchers have estimated that honeybees

foraging for nectar could consume between 1.1 and 4.3 ng

of imidacloprid over their lives (Rortais et al. 2005).

The lethal oral dose (LD50) of imidacloprid for bees has

been measured in several studies, with significant variation.

The LD50 for bumblebees has been reported at 40 ng per

bee (24 h) and 20 ng per bee (72 h) (Marletto et al. 2003).

For honeybees (A. mellifera), a more recent review high-

lights several studies that report the 48-h LD50 for honey-

bees to be in the range of about 4–104 ng bee-1

(Blacquiere et al. 2012).

Some studies report that imidacloprid irreversibly

blocks nicotinic acetylcholine receptors in insects (Ten-

nekes and Sánchez-Bayo 2011; Rondeau et al. 2014).

Scarce data exists about whether a single, concentrated

dose or a chronic, low dose of imidacloprid is more

harmful to insects (Van den Brink et al. 2016). Different

arthropods show different sensitivities to acute versus

chronic doses (Roessink et al. 2013), and pesticides affect

arthropods differently in summer versus winter (Van den

Brink et al. 2016). Suchail et al. (2001) report that chronic

exposure to imidacloprid was toxic to honeybees at a

60–6000 times lower dose than those required to produce

the same acute effect.

Neonicotinoid pesticides are also known to have sub-

lethal effects on bees. Learning ability in bumblebees was

affected by even a small dose of imidacloprid (10 ll of

10 ppm imidacloprid in sugar solution) (Stanley et al.

2015a), and imidacloprid-treated pollen has been shown to

reduce visual learning capacity in honeybees (Han et al.

2010). Asian honeybees (Apis cerana) showed reduced

olfactory learning after consuming as little as 0.1 ng of

imidacloprid (Tan et al. 2015). Furthermore, neonicotinoid

pesticides have sub-lethal effects on bumblebees at the

colony level—colonies consuming pollen and sugar water

containing 6 and 0.7 mg kg-1 imidacloprid, respectively,

had an 85 % reduction in production of new queens

(Whitehorn et al. 2012).

Chronic, sub-lethal doses of neonicotinoids have also

been shown to alter some aspects of pollination behavior in

bees. Bumblebees experiencing chronic exposure to

neonicotinoids change their pollination behavior by

returning with less pollen (Feltham et al. 2014). Imida-

cloprid ingestion by honeybees has been shown to reduce

the number of returning foragers and the number of for-

aging bouts per bee (Karahan et al. 2015). Other research

suggests that pesticides impair the pollination services

provided by bumblebees—bumblebee colonies that were

exposed to field-realistic doses of pesticides for 13 days

showed lower visitation rates to apple blossoms, which

resulted in these apple trees producing fewer seeds than

trees that were pollinated by untreated bees (Stanley et al.

2015b).

Experiments investigating the effects of chronic pesti-

cide exposure are valuable in that they may mimic field-

realistic experiences, but these types of experiments are

typically unable to measure the amount of pesticide actu-

ally ingested by bees, because measuring the amount of

contaminated nectar that a bee consumes in the field is

difficult. The estimates for the amount of nectar a foraging

bee consumes in a day vary widely. The consumption of

sugar depends on the bee’s energetic needs—Beutler

(1951) suggests that honeybees consume 11 mg sugar per

hour of flight, and Rortais et al. (2005) estimated that a

honeybee foraging for nectar during the summer would

consume 32–128.4 mg of sugar per day.

Bumblebee workers consume more nectar per day than

honeybees. Furthermore, foragers consume sugar at a

higher rate than nest workers (Rortais et al. 2005), likely

due to the energetic demands of flying and collecting

resources. Incubating Bombus terrestris queens metabolize

approximately 600 mg of sugar per day, according to res-

piration rate data (Silvola 1984), and male bumblebees

(Bombus lucorum) foraging for 4 h per day consume an

average of 180 ll of 50 % sugar solution in 24 h—about

90 mg of sugar per day (Bertsch 1984). Laycock et al.

(2012) reported individual bumblebees (Bombus terrestris)
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consuming 400 mg of sugar syrup (1.27 kg L-1 fructose/

glucose/saccharose) in a day.

All of these reports suggest that a B. impatiens worker,

foraging for a full day, could reasonably consume 150—

300 ll of nectar (50 % w/w sugar) per day. If that nectar

had a field-realistic concentration of imidacloprid

(10 lg L-1) (Stoner and Eitzer 2012), then a forager could

ingest 1.5–3 ng of imidacloprid during a day of foraging.

This estimate is similar to Laycock et al. (2012), which

reported B. terrestris individuals consuming 3 ng of imi-

dacloprid in a day when they fed on sugar syrup with

imidacloprid (10 lg L-1).

Here, we investigate the effects of imidacloprid on an

important aspect of bumblebee pollination behavior, upon

which many crops and other plants depend—sonication, or

buzz pollination. We examined bumblebees (Bombus

impatiens) sonicating on the blossoms of tomato plants

(Solanum lycopersicum); these flowers produce only pollen

(no nectar), enclosed within tube-like anthers with small

pores that release pollen when sonicated, or vibrated, by

bees (Buchmann 1983; Thorp 2000). Bumblebees and

other wild bees (but not honeybees) can produce these

vibrations by contracting their flight muscles at high fre-

quencies without flapping their wings.

We provided bees with doses of imidacloprid that were

well below reported LD50 values in a single, concentrated

treatment (Marletto et al. 2003 reported a 48-h LD50 of

20 ng per individual B. terrestris). Two of our treatment

groups represent amounts of imidacloprid that a bee could

reasonably ingest in a single day (0.0515 and 0.515 ng),

and the highest treatment, represents an amount that a bee

may consume over several days (5.15 ng). We quantified

several aspects of sonication and flight behavior, including

sonication frequency, sonication length, and flight fre-

quency, before treatment. After treatment, we observed

bees for up to several weeks, recording which bees

resumed sonication behavior, and re-measuring sonication

and flight variables in bees that did perform buzz pollina-

tion. Unlike past studies, which treated whole hives of

bumblebees with chronic doses of imidacloprid (e.g. Gill

and Raine 2014; Stanley et al. 2015b), we controlled the

amount of imidacloprid ingested by individual bees by

providing a single, measured dose in sucrose solution to

each bee.

Materials and methods

Study organisms and foraging space

We purchased four class-A hives of Bombus impatiens

from Biobest (http://www.biobestgroup.com). Two hives

arrived on 10 Sept 2015, and another two hives arrived on

22 Sept 2015. Upon receiving the hives, we verified that

queens were present in each, and we removed any males.

Each hive was placed in a mesh cage that was 1.8 m long

by 1.8 m tall by 0.6 m wide. These cages were placed in a

pollinator-excluding greenhouse. The greenhouse had

mesh walls and a plastic roof—thus the conditions inside

the greenhouse were similar to outdoor conditions. We

allowed bees to acclimate to the cages for at least 2 days

prior to starting experiments.

The hives were enclosed in foam coolers for insulation,

with small holes cut for entry and exit. Each cage contained

a pollen feeder and a nectar feeder, providing pollen and

nectar ad libitum. Nectar consisted of 342 g organic cane

sugar per liter of water, or *1 M sugar water. Pollen was

purchased from Koppert Biological Systems (http://www.

koppert.com) and ground with a mortar and pestle before

placing *2 g in a small, plastic dish. Pollen was replaced

approximately every 3 days.

In addition to the artificial feeders, each cage contained

a potted tomato plant (Solanum lycopersicum). We allowed

bees to visit two varieties of cherry tomatoes with similar

floral morphology, ‘‘Cherry Roma’’ and ‘‘Sweet 100

Hybrid’’. We used ‘‘Sweet 100 Hybrid’’ only on days when

we did not have enough fresh ‘‘Cherry Roma’’ flowers.

Each day that we observed the bees, we replaced the plant

inside the bees’ cage with a different plant that had been

kept in a greenhouse that excluded pollinators. Thus, we

were able to rotate tomato plants into the bee cages, con-

stantly providing freshly-opened flowers for pollen forag-

ing each day. We observed all four of the hives, typically

between 10 a.m. and 4 p.m., until 16 Oct 2015. Because

new individuals were treated daily, different numbers of

individuals were observed for a range of dates.

We also recorded local weather data—pressure, tem-

perature, relative humidity, and light intensity—at the time

of each observation, using a weather station inside the

greenhouse.

Marking individual foragers

We observed hives on each day with good weather (sunny

and relatively still) until 16 Oct. When a bee was first

observed foraging on S. lycopersicum, we captured her

with an insect vacuum (2820GA, Bioquip, Rancho Dom-

inguez, California) and transferred her from the aspirator

tube into a queen-marking cage with plunger (The Bee

Works, Oro-Medonte, Ontario, Canada). We gently pressed

the bee against the mesh at the top of the tube to immo-

bilize her while we marked her mesosoma.

We alternated marking the bees with paint or bee tags, to

evaluate whether the marking method affects foraging

behavior (Switzer and Combes, in review, Journal of

Melittology). We marked about half of the bees with paint,
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using oil-based paint pens (Sharpie, Oak Brook, Illinois),

and the other half with bee tags—small, numbered plastic

discs (*3 mm diameter; Queen marking kit, Abelo, Full

Sutton, York, United Kingdom) attached to the mesosoma

with superglue (Gel Control, Locktite, Henkel Corporation,

Westlake, Ohio). After applying paint or affixing the tag

with superglue, we used the outward vent from the insect

vacuum to blow air onto the paint/glue for 30 s to dry it

before releasing the bee back into the cage.

When we observed previously-marked individuals for-

aging for pollen on the S. lycopersicum plants, we reached

into the cage with a shotgun microphone (SGM-1X, Azden,

Tokyo, Japan) to collect an audio recording that included

sonication and post-sonication flight sounds with a digital

recorder (DR-100mkII, Tascam, Montebello, California).

We then recaptured the bee for treatment with imidaclo-

prid. We treated new bees with imidacloprid almost every

day of the experiment and therefore did not have the same

number of post-treatment observation days for each bee.

This is accounted for by using Cox regression (below).

Imidacloprid treatments

After recapture, each marked bee was transferred to a clear,

1-L, plastic container with a vented lid, and held indoors

without access to nectar or pollen for an average of

140 min. After being deprived of food, bees were randomly

assigned to one of four treatment groups, and fed 10 lL of

sugar water mixed with different amounts of imidacloprid

(Pestanal, Sigma-Aldrich, St. Louis, Missouri), using a

micropipette.

To prepare solutions for the treatment groups, we dis-

solved imidacloprid in deionized water and performed a

series of dilutions to obtain the correct doses. Solutions

were mixed and stored out of UV light, since imidacloprid

breaks down quickly in water that is exposed to light at

wavelengths between 200 and 300 nm (Zheng et al. 2003).

We fed 10 lL of sugar solution mixed with imidacloprid to

bees, resulting in the bees consuming 0.0515, 0.515, or

5.15 ng of imidacloprid. After feeding bees with 10 lL of

imidacloprid solution, we used a clean micropipette to feed

additional, untreated 1 M sugar water to the bees until they

stopped drinking (stopped extending their proboscis). We

deprived treated bees of food for at least 1 h after con-

suming the imidacloprid solution and additional nectar, and

then released them back into the foraging cages.

The first time we observed a bee foraging on S. lycop-

ersicum after treatment, we again recorded sonication and

flight sounds with a microphone, then collected the bee and

removed it from the experiment. The amount of time that

elapsed between pre and post-treatment recordings was

different for each bee—we account for the differences

when we analyze the sounds, and we analyze the differ-

ences in time directly, using Cox regression (below).

At the end of the experiment (16 Oct 2015), we col-

lected all of the remaining bees from the hives, recorded

whether they were alive or dead, and used digital calipers

to measure their intertegular (IT) span (the distance

between the wing bases). We were unable to collect IT

span measurements for all bees, as a small proportion of

the paint marks or tags wore off during the course of the

experiment—we marked a total of 212 bees during the

experiment, and were unable to identify 17 of 100 marked

with paint and 17 of 112 marked with tags. These indi-

viduals were dropped from our analysis.

Extracting data from audio

We used R (R Core Team 2015), with the packages see-

wave (Sueur et al. 2008) and tuneR (Ligges et al. 2013), to

process the audio recordings and quantify sonication and

flight sounds. We first listened to the recordings to identify

the loudest, longest sonication sound, and recorded its

length. We focused on the loudest, longest sonication,

because we observed that bees often performed shorter,

higher-frequency sonications on the petals of the flowers,

and we wanted to exclude these from analysis. We clas-

sified sounds as a single sonication if there was no audible

break for[0.2 s. After selecting the sequence for analysis,

we used the ‘‘spec’’ function from the seewave package to

calculate power spectral density, using a hanning window

of 2048 points (Sueur et al. 2008). To determine the son-

ication frequency (the frequency at which the bee was

vibrating), we selected the highest peak on the spectrum

between 195 and 400 Hz (a reasonable range for sonication

frequency).

To check the accuracy of the frequency obtained by this

method, we generated a sine wave at the frequency iden-

tified as the highest peak, and compared it aurally to the

audio recording of sonication. If the frequency returned

from the spectrum was noticeably different from the audio

recording (which can occur due to background noise), we

used Audacity (Audacity 2015) to obtain the correct soni-

cation frequency. Within Audacity, we selected the soni-

cation portion of the audio recording, and plotted the

spectrum (hanning window, 2048 points). We then gener-

ated sine waves at each of the frequencies corresponding to

the peaks in the spectrum. We compared each of these sine

waves to the recording, aurally, and chose the peak that

corresponded most closely to the audio recording of the

sonication.

We used the same process to quantify wingbeat fre-

quency—selecting a portion of the recording that contained

the bee flying, plotting a spectrum, and selecting the
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highest peak. We used a range to 120–220 Hz for selecting

the peak of wingbeat frequency, as wingbeat frequencies

are typically lower than sonication frequencies (Switzer

et al. 2016). We checked all wingbeat frequencies aurally

in the same way as for sonication frequency.

Statistical analysis

To determine whether imidacloprid affected wingbeat

frequency, sonication frequency, or length of sonication,

we calculated the change in each behavior by subtracting

post-treatment values from pre-treatment values. We

observed a few bees sonicating on ‘‘Sweet 100 Hybrid’’

flowers (when ‘‘Cherry Roma’’ flowers were not available),

and we initially excluded these individuals from our anal-

ysis of sonication and flight sounds, because we have

previously found that bumblebees change sonication fre-

quency and/or length on different species of plants (Switzer

and Combes, in review, Apidologie). We reran the analysis,

including the few bees that sonicated on S. lycopersicum

‘‘Sweet 100 Hybrid’’, and we found no differences in sig-

nificance of coefficients associated with imidacloprid

treatment; thus, these bees were included in the final

analysis.

We performed multivariate multiple regression to

determine if there were significant changes in the bees’

behaviors—wingbeat frequency, sonication frequency, and

sonication length. We were able to make comparisons only

on bees that resumed sonication behavior after being

treated with imidacloprid. Because very few bees in the

0.515 and 5.15 ng imidacloprid treatment groups were

observed foraging for pollen on S. lycopersicum flowers

after treatment, we dropped those two treatments from our

analysis. Our initial model included imidacloprid treatment

as the only dependent variable, and we used a series of

likelihood ratio tests to determine if adding other covariates

made the model significantly better. We chose this forward

stepwise procedure—starting with a small model, and

adding covariates—because we started with a small dataset

and wanted to find variables that influenced the response

variables while excluding variables that made small con-

tributions (Armstrong and Hilton 2010). We suspected that

environmental variables such as temperature might affect

behaviors (Unwin and Corbet 1984), so we investigated the

following weather covariates: temperature, atmospheric

pressure, light intensity, and relative humidity. We also

investigated mark type (paint or bee tag), intertegular span,

the number of days between pre-treatment recording and

post-treatment recording, and the hive number.

To evaluate whether imidacloprid treatment affects the

probability that bees would resume sonication behavior, we

used survival analysis techniques from the R package,

survival (Therneau and Grambsch 2000). The data

recorded includes the amount of time since diagnosis/

treatment and whether or not an event occurs. The data are

right-censored. For example, survival analysis has been

used to examine the amount of time until seeds germinate

(Manso et al. 2013). Here we used ‘‘collecting pollen from

S. lycopersicum after being treated with imidacloprid’’ as

our event. Our data are right-censored because some of the

bees died, and others stayed alive but were never observed

on S. lycopersicum after treatment, within the time limits of

the study.

We used Cox proportional hazards regression to deter-

mine if there was a significant difference in the probability

of bees resuming sonication behavior among the treatment

groups. The coefficients from the Cox model can be used to

estimate hazard ratios—the chance of the event occurring

in the treatment group, relative to the control group. For

example, in the highest treatment group, the coefficient is

-2.73; exp(-2.73) = 0.065, meaning that for a fixed point

in time, individuals in the highest treatment group are

about 0.065 times as likely to sonicate as bees in the

control group.

We used Cox regression so we could include

intertegular span and hive number as covariates. We cen-

tered the intertegular span variable before modeling to

make interpretation easier. We also suspected an interac-

tion between mark type and intertegular span, and between

treatment and intertegular span, so we included interaction

terms: intertegular span * mark type ? intertegular span *

treatment. We started with a full model (all covariates) and

stepped backward, using likelihood ratio tests to determine

if each covariate improved the model. We chose a back-

ward stepwise procedure—starting with a large model and

removing terms—because we had a priori reasons to

include the interaction terms, and a forward procedure

would not investigate interactions when the main effects

are not significant. We used the R packages, ggplot2

(Wickham 2009) and ggfortify (Horikoshi and Tang 2015),

to make figures for survival curves.

Though the experiment was not designed to quantify

mortality rates among the treated bees, we report the

numbers of treated individuals that were observed resum-

ing sonication behavior (and then removed from the

experiment), that were alive at the end of the experiment

but not observed sonicating after treatment, and that were

dead, in each of the treatment groups. We did not use

statistical tests to assess differences among groups, because

the experiment was not designed to test mortality, and we

were unable to identify all of the bees at the end of the

experiment.

We report un-adjusted p values, with no corrections to

account for multiple comparisons. However, we discuss the

possible tests that may be interpreted skeptically, due to

relatively high p values.
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Results

Sample sizes

After removing newly emerged queens and bees that were

incorrectly marked or treated, we report 199 bees from four

hives that were marked in our study—106 with bee tags

and 93 with paint. We observed 105 of the marked bees

resuming sonication behavior after being marked—34 with

bee tags and 71 with paint. Of the 105 bees that received

one of the imidacloprid or control treatments, 45 were

observed resuming sonication behavior after being treated.

The remaining 60 bees remained in the cages, but were not

observed preforming sonication after being treated.

Wingbeat frequency, sonication frequency,

and sonication length

We included only bees in the control and smallest dosage

group (0 and 0.0515 ng imidacloprid, respectively) in this

analysis, since we did not have large enough samples of the

other two groups for analysis. Beyond the imidacloprid

dose, no additional covariates improved the model, so we

report wingbeat frequency, sonication frequency, and

sonication length as dependent variables, with imidacloprid

dose as the only independent variable. We found no evi-

dence that wingbeat frequency, sonication frequency, or

sonication length were affected by consuming 0.0515 ng of

imidacloprid (MANOVA; Pillai test stat = 0.08; approx.

F(3,31) = 0.9; p value = 0.45).

Probability of resuming sonication

Figure 1 shows the cumulative percentage (inverse

Kaplan–Meier curves) of bees that were observed soni-

cating on S. lycopersicum after consuming different doses

of imidacloprid. For this analysis, we used bees that soni-

cated on both varieties of S. lycopersicum. When we reran

this analysis, either including the tomato variety as a

covariate or excluding bees that sonicated on S. lycoper-

sicum ‘‘Sweet 100 Hybrid’’, we found no difference in the

significance of coefficients associated with imidacloprid

treatment. Our final Cox proportional hazard regression

model included only imidacloprid treatment as a predictor

variable (v2
3ð Þ ¼ 23:58; p value\ 0.00001). No other

covariates made the model better. This model did not

include individuals for which we could not record

intertegular span, because we needed to have the same

dataset in all models for likelihood ratio tests to be valid.

However, we reran the final model with all individuals

(including those without IT span measurements), and found

no change in significant or non-significant coefficients.

Though the bees that ingested 0.0515 ng of imidacloprid

did not show a marked difference in their probability of

resuming sonication behavior (b(0.0515 ng) = 0.44;

z = 1.326; p value = 0.18), the bees that ingested

0.515 ng of imidacloprid were marginally different than

the control group (b(0.515 ng) = -1.02; z = 1.98; p

value = 0.048)—this borderline p value would become

non-significant if we adjusted for multiple comparisons,

using the Bonferroni method. The bees that ingested

5.15 ng of imidacloprid showed markedly different

behavior (b(5.15ng) = -2.73; z = 2.64; p value = 0.0084).

Bee mortality

Figure 2 shows the number of bees that received each

treatment, and their status at the end of the experiment.

Bees that were observed sonicating after treatment were

removed after observation, so they could not be classified

as dead or alive at the end of the experiment. The sample

sizes in Fig. 2 are different from the sample sizes used in

the Cox regression, because we were unable to find some

individuals at the end of the experiment, so we dropped

them from the Cox regression.

Discussion

Based on previous research about the effects of pesticides

on other aspects of pollen foraging (Feltham et al. 2014),

we expected to see a significant difference in the buzz-

pollination behavior of bumblebees that ingested imida-

cloprid. We did not find evidence that any of the

mechanical aspects of behaviors we investigated—sonica-

tion frequency, sonication length, or wingbeat frequency—

were different for bees that ingested 0.0515 versus 0 ng of

imidacloprid. We were unable to analyze data for bees in

groups that received higher doses of imidacloprid, because

we rarely observed them performing buzz pollination after

ingesting imidacloprid—this reflects that imidacloprid has

sub-lethal or delayed lethal effects when consumed at

doses above 0.5 ng per bee. However, in a separate study,

we found that wingbeat frequency was not affected by

doses of imidacloprid up to 1 ng per bee (unpublished

data).

The probability of observing bees sonicating on S.

lycopersicum after treatment was significantly lower for

bees that consumed 0.515 or 5.15 ng of imidacloprid, rel-

ative to bees that consumed no imidacloprid (Fig. 1). We

acknowledge that the p value for the 0.515 ng group was

relatively high (p value = 0.048)—had we adjusted the p

value to account for multiple comparisons, using the con-

servative Bonferroni method, this group would have a p

value above the a = 0.05 level. We also acknowledge that
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our data were likely not completely independent for each

individual—treating individuals with imidacloprid and

removing foragers from the experiment (after they were

observed sonicating again) likely influenced other bees

within the hives, making them more likely to forage.

Overall, though, it is clear that imidacloprid does affect the

likelihood of bees continuing to engage in buzz pollination

when ingested doses are above 0.5 ng bee-1.

Though we were unable to analyze mortality in each of

the treatment groups statistically, our data suggest a trend

in mortality with increasing treatment doses (Fig. 2). We

estimated mortality rates as follows: 11 % (3/27) for con-

trol, 21 % (7/34) for 0.0515 ng, 33 % (7/21) for 0.515 ng

and 57 % (12/21) for 5.15 ng doses. The amounts of imi-

dacloprid fed to bumblebees in this study were well below

the LD50 values previously reported for bumblebees, which

range from 20 to 40 ng per bee for 24–48 h after

consumption (Decourtye et al. 2003; Marletto et al. 2003;

Blacquiere et al. 2012).

The probable cause of death in our study was acute or

delayed lethal effects of the pesticide, though other possi-

ble explanations exit. One hypothesis is that treated bees

may not have been able to find the hive after leaving the

nest to forage; studies on honeybees suggest that imida-

cloprid reduces navigation abilities (Bortolotti et al. 2003;

Fischer et al. 2014), but a study on bumblebees suggests

that navigation may not be the cause of impaired foraging

(Feltham et al. 2014).

We saw no evidence that bees were able to clear imi-

dacloprid from their systems after a period of time. If

bumblebees in our study had cleared the imidacloprid from

their bodies, we would have expected to see no difference

in the pollination behavior of treated bees versus untreated

bees, as post-treatment observations of pollination behavior

did not begin until at least 24 h after treatment, and con-

tinued for up to several weeks. Alternatively, bees in our

study may have in fact cleared imidacloprid from their

bodies, but the effects of the treatment lasted well beyond

the point when they had cleared the pesticide.

Our study had several limitations. First, treating bees

with imidacloprid in a single dose does not represent the

manner in which bees would be exposed in natural envi-

ronments, but this method had the benefit of allowing us to

precisely control the amount of pesticide ingested by bees.

Second, though our study investigated only the effects of

imidacloprid in nectar, pollen also can contain imidaclo-

prid and its residues (Schmuck et al. 2001; Rogers and

Kemp 2003; Stoner and Eitzer 2012). The Solanum

lycopersicum plants in our study were never treated with

neonicotinoid pesticides. However, the supplemental pol-

len feeder was filled with pollen collected from honeybees

(http://www.koppert.com), and we cannot be sure that this

pollen was free of neonicotinoid pesticides. However, we

do not expect the pollen to significantly affect forager

behavior for several reasons. First, foragers do not consume

large amounts of pollen, relative to nectar intake, as pollen

is primarily collected for the larvae. In honeybees, foragers

eat only small amounts of pollen (Crailsheim et al. 1992).

In bumblebees (Bombus terrestris), Malone et al. (2000)

recorded workers eating 3.3–35.3 mg of pollen per day—a

small amount, relative to the reported 125 to 215 lL of

sugar syrup (50 % w/v) consumed per day. The concen-

tration of neonicotinoid pesticides in pollen is often

reported to be 8–20 ppb (Schmuck et al. 2001; Rogers and

Kemp 2003; Bonmatin et al. 2003), though Mullin et al.

(2010) found 206 ppb imidacloprid in honeybee pollen.

An interesting follow-up experiment would be to test

bumblebees’ ability to learn how to perform buzz pollination

after consuming imidacloprid. Compared to nectar foraging,

pollen collection is a more challenging behavior that has

Fig. 1 Curves showing the cumulative percentage of bees that

performed sonication on Solanum lycopersicum after ingesting

different amounts of imidacloprid (n(0 ng) = 26,

n(0.0515 ng) = 32, n(0.515 ng) = 17, n(5.15 ng) = 17). The plus

symbols indicate censored data—bees that were never observed

collecting pollen after treatment

Fig. 2 The number of bees in each treatment group, and their status

at the end of the experiment

1156 C. M. Switzer, S. A. Combes

123

http://www.koppert.com


been shown to require a substantial time to learn (Raine and

Chittka 2007), and imidacloprid is known to hinder learning

in bees (Han et al. 2010; Tan et al. 2015; Stanley et al. 2015a).

In our experiment, bees were observed collecting pollen

from S. lycopersicum at least two times before consuming

imidacloprid (once prior to marking and again prior to imi-

dacloprid treatment). Thus, bees had already learned how to

process S. lycopersicum flowers before consuming imida-

cloprid. However, we might predict that bees who consume

imidacloprid before performing buzz pollination would have

a more difficult time learning to collect pollen by this

method, or would have trouble collecting pollen as effec-

tively as non-treated bees.

Conclusions

To sum up, our results show that imidacloprid in small

doses can affect the buzz-pollination behavior of bumble-

bees. We did not find evidence that consuming 0.0515 ng

imidacloprid affected bumblebees’ wingbeat frequency,

sonication frequency, or sonication length, and we were

unable to test these variables in bees that consumed higher

amounts of imidacloprid. However, we found that bum-

blebees who consumed 0.515 or 5.15 ng of imidacloprid

were significantly less likely to resume sonication behavior

after treatment, compared to bees subjected to a control

(0 ng) treatment. In addition, we noted that many (but not

all) of the bees that had consumed 5.15 ng of imidacloprid

were dead at the end of our experiment, suggesting that

future experiments are needed to test whether 5.15 ng

imidacloprid—which is significantly below reported LD50

values for bumblebees—increases the mortality of foragers

within a nest through either acute or delayed lethal effects.
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Gmeinbauer R, Schöffmann B (1992) Pollen consumption and

utilization in worker honeybees (Apis mellifera carnica):

dependence on individual age and function. J Insect Physiol

38(6):409–419

Decourtye A, Lacassie E, Pham-Delègue MH (2003) Learning
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